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1 Introduction

Multi-agent teaming, a setting in which numerous, interacting entities cooperate to achieve

common goals or behaviors, has a variety of applications including robot coordination [1],

autonomous driving [2], and distributed control systems [3]. Under a paradigm known as

multi-agent reinforcement learning, agents optimize their behavior in a trial-and-error process

in order to maximize a reward signal—a scalar form of feedback which explicitly evaluates

the quality of the actions taken [4]. However, this approach requires manually specifying a

task-specific reward that effectively induces the desired coordination strategy. This can be

an issue in certain domains as a poorly-specified reward can result in unintended or harmful

behaviors [5]. Reinforcement learning approaches can also struggle to learn efficiently if the

provided reward signal is sparse and only rarely provides useful feedback [6].

An alternative approach, known as apprenticeship learning, involves leveraging demon-

strations which implicitly encode rich information about desirable behaviors [7]. Multi-agent

teams trained using this paradigm no longer require the specification of a reward signal.

In this work, we specifically examine apprenticeship learning for environments involving

coordination between heterogeneous agents. In other words, scenarios where different members

of team are not restricted to having identical sensing or operational capabilities. Examples of

such environments include wireless sensor and actor networks [8] in which low-cost, low-power

sensor devices transmit information to resource rich actor nodes as part of a coordinated

decision-making process.

We propose an algorithm for imitating a demonstrated multi-agent behavior while simulta-

neously learning to communicate from scratch. In other words, this approach enables learning

a desired high-level coordination strategy without manual specification or demonstration of

the low-level communication protocol required in order to enable such a strategy. We also

propose several modifications to existing modeling architectures and optimization objectives

which empirically demonstrate improved sample efficiency during learning, reducing the

required amount of interactions with the environment. We show that these approaches
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in combination can be effectively applied to a variety of difficult tasks, including some

which involve simultaneous interaction with the environment and inter-agent communication.

Through this work, we aim to reduce barriers of entry to deploying multi-agent teams in

complex, real-world environments.

2 Problem Description

We consider the setting of decentralized partially observable Markov decision processes [9]. The

environment configuration is described with a state, s, contained in a set of possible states, S.

At each time step, every agent, i ∈ 1, . . . , n, receives a local observation, oi, as a probabilistic

function of the state, Oi(oi | s), and takes an action, ai, out of a set of possible actions, Ai.

The set of all possible observations for an agent is called the agent’s observation space, while

the set of actions is called the action space. The policy, πi(ai | oi) : Ai → R, represents the

agent’s distribution over actions taken in each state. At any timestep t, the system transitions

from a state, st, to the next state, st+1, given the joint action, at = (a1
t , . . . , an

t ), based on

a transition probability function, T (st+1 | st,at). The starting state is sampled from some

distribution: s0 ∼ η.

In the context of standard multi-agent reinforcement learning, a reward function, R(s,a),

is defined. Fully-cooperative reinforcement learning involves a single scalar reward, shared

between all agents. The quality of a set of policies, π1, . . . , πn, is given by their expected

return, ∑T
t=0 γtrt, where γ ∈ [0, 1] is the discount factor, rt denotes the reward received at

timestep t, and T is the episode time horizon. For algorithms which involve collecting data in

an online fashion by interacting with the environment, sample efficiency refers to the amount

of experience required during learning.

We define a trajectory, ζ, as a sequence of states and actions, (s0,a0, s1,a1, . . . , sT ). When

discussing apprenticeship learning, we assume that the provided demonstrations satisfy s0 ∼ η,

at = (a1
t , . . . , an

t ) has ai
t ∼ πi

E(· | st) ∀i ∈ 1, . . . , n, and st+1 ∼ T (st,at) ∀t ∈ 1, . . . , T − 1.
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The policies π1
E, . . . , πn

E are called the expert policies.

Apprenticeship learning is the task of learning to imitate a behavior using expert demon-

strations [7]. In contrast to standard reinforcement learning, which involves learning a

behavior policy given a reward function, a paradigm called inverse reinforcement learning

(IRL) involves extracting a reward function from observed behavior [10]. Existing algorithms

for both paradigms and the relevance of IRL to apprenticeship learning are discussed in

Section 3.

In this work, we consider the problem of online apprenticeship learning in decentralized,

partially observable multi-agent environments. In other words, given a set of trajectories,

{ζE
k }K

k=1, generated by expert policies, π1
E, . . . , πn

E, we attempt to learn policies, π1, . . . , πn,

which imitate the expert behavior. For this purpose, agents can interact with the environment

online, potentially receiving a reward signal, R. This reward signal can itself be learned in

order to induce the desired imitation behavior. We specifically consider the case in which

agents may be heterogeneous, so different agents i 6= j may have different observation spaces

Oi, Oj or action spaces Ai, Aj.

3 Literature Review

Before we cover existing literature on multi-agent apprenticeship learning, we include a

preliminary discussion of the corresponding approaches for the simpler, single-agent case.

One of the simplest approaches to apprenticeship learning is behavioral cloning, which

directly trains the agent to maximize the likelihood of the demonstrated actions given the

corresponding environment states [11]. However, behavioral cloning can often produce policies

with poor performance, especially when dealing with limited data, due to compounding errors

resulting in covariate shift [12]. Intuitively, the agents tend to have poor performance on

states not seen in the demonstration dataset—and since actions taken in the current state

affect future states, the errors tends to compound over the course of a trajectory.
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One approach which addresses this issue, known as Dataset Aggregation (DAgger) [13],

involves manually re-labeling visited states with expert actions during training. In a similar

line of work, an approach called Training an Agent Manually via Evaluative Reinforcement

(TAMER) [14] incorporates human-provided rewards into the training pipeline. In this work,

we instead focus on approaches which do not require additional, online interaction with

human experts.

Generative adversarial imitation learning (GAIL) [15] addresses the aforementioned issue

with behavioral cloning by training the agent in such a way that steers entire trajectories

closer to the desired behavior. To accomplish this, it is assumed that a simulator of the

environment is available, and state-action pairs are collected from executing the learned

policy. Then, a separate model known as the discriminator is trained to differentiate between

state-action pairs collected by the learned agent and pairs provided in the demonstration

dataset. The output of this discriminator is treated as a reward function and optimized over

using standard reinforcement learning algorithms, encouraging the agent to match the expert

in expectation over full trajectories. Notably, unlike direct reinforcement learning approaches,

this reward signal is not manually specified but rather learned automatically.

GAIL is an approach which primarily aims to extract a policy which effectively imitates

the demonstrated behavior. A paradigm known as inverse reinforcement learning (IRL) aims

to extract a reward function which explains the demonstrated behavior [10]. Apprenticeship

learning can be framed as an IRL problem, since a reward function under which the demon-

strated policy is optimal can then be used to train an imitation policy with reinforcement

learning [7].

Although the GAIL discriminator is used to provide a reward signal during training, a

policy trained to optimality produces state-action pairs which are impossible to differentiate

from the demonstrations. The discriminator tends to converge to a uniform output across all

states and actions, which does not encode a particularly informative reward signal. Adversarial

inverse reinforcement learning (AIRL) [16] is a framework that addresses this issue by placing
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a specific structure on the discriminator which enables recovering a meaningful reward

function even after convergence. The factor which makes AIRL particularly interesting in the

context of apprenticeship learning is that by placing an additional constraint on the reward

function—restricting the reward to depend only on the observation and not the action—the

resulting policies were empirically found to be more robust than GAIL with respect to changes

in environment dynamics.

Other approaches based on reward learning include maximum margin IRL, [10], maximum

entropy IRL [17], soft Q imitation learning [18], and inverse soft-Q learning [19]. However,

we will focus on approaches which have been directly extended to multi-agent environments

in existing literature, namely GAIL and AIRL.

New difficulties arise when considering multi-agent environments. For instance, since each

agent’s policy—and therefore, the way they interact with other agents—changes over the

course of training, the effect of any individual agent’s action may also change, resulting in an

effectively non-stationary environment [20]. Additionally, there may exist multiple strategy

equilibria in multi-agent environments [21]. In other words, whether a policy is optimal for

one agent can depend on the current policies of all other agents.

One body of existing work extends algorithms for single-agent apprenticeship learning

to multiple agents using restrictive assumptions about the structure of the environment.

For example, Šošić et al. [22] proposes an IRL algorithm for swarm systems based on the

assumption that all agents share the same dynamics and observation spaces and that the

demonstrated behavior depends only on a small neighborhood around each agent rather than

the state of the entire group. This approach enables reducing the multi-agent problem to an

equivalent single-agent problem but is not applicable to systems with any degree of agent

heterogeneity. Bhattacharyya et al. [23] discuss an application of GAIL to a multi-agent

driving simulator. However, the proposed algorithm is based on full parameter sharing

between all agents, so it similarly cannot be applied to environments where it is desirable

for different agents to learn different behaviors. Wang & Klabjan [24] propose a robust IRL
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algorithm for two-player zero-sum games—in other words, games where one player’s gain is

always equivalent to the other player’s loss—which rules out environments with inter-agent

cooperation. In our work, we primarily focus on approaches relevant to heterogeneous teaming,

where agents can differ in terms of observation spaces, action spaces, and/or policies.

Additional related works include the approach by [25], who examine the problem of

adapting an agent’s policy to the strategies of new partners during test time. In other words,

the diversity in the joint strategy of all other agents is treated as diversity in the space of

possible tasks, and the goal is to meta-learn a method to adapt to different partners, and

thus different tasks, at test time. Agents do not interact directly through communication,

and the adaptation is performed by observing the actions taken by the partner agents. In

our work, we instead examine the setting where the policies for all agents, rather than just

a single agent, are learned simultaneously, and the agents must coordinate by learning an

inter-agent communication strategy.

Multi-agent generative adversarial imitation learning (MA-GAIL) [26] is one existing

approach applicable to multi-agent apprenticeship learning in cooperative, heterogeneous

environments. MA-GAIL is an extension of the aforementioned single-agent GAIL algorithm

to multiple agents which introduces several variants of a multi-agent discriminator architecture.

These variants are based on different kinds of prior knowledge about the structure of the

environment’s reward. For example, a fully centralized discriminator was utilized for scenarios

where all agents should receive identical rewards, and a decentralized discriminator for

environments which may have a mix of cooperative and competitive interactions. However,

the empirical evaluations in this work were limited to relatively simple environments; for

example, no task included an agent which was capable of simultaneously communicating with

another agent and taking an action which affects the environment state directly.

Multi-agent adversarial inverse reinforcement learning (MA-AIRL) [27] is a similar al-

gorithm based on extending the previously mentioned AIRL algorithm to multi-agent envi-

ronments. Empirically, this approach was found to perform competitively with MA-GAIL
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in terms of imitation learning performance while also extracting a reward function highly

correlated with the ground-truth reward function used to train the demonstrating policies.

Jeon et al. [28] builds off of MA-AIRL by examining the effects that the discriminator

architectures proposed in the MA-GAIL paper as well as the observation-only variants in the

original single-agent AIRL paper have on sample efficiency. In particular, it was found that

an observation-only decentralized discriminator was shown to fail on environments where a

blind listener agent acted solely based on the communications of a different, speaker agent.

However, the empirical evaluations in these works are still limited to environments similar

to those presented in the MA-GAIL paper, albeit scaled up to more agents in [28]. We

experiment with complex environments involving simultaneous acting and communicating in

Section 5.

To learn in environments with inter-agent communication, both MA-GAIL and MA-

AIRL use demonstrations which include communication actions in the action space. In

other words, the demonstration data needs to encode all the information shared between

agents. This restriction rules out the possibility of leveraging a large body of work related to

learning differentiable communication strategies—approaches which pass gradient information

through messages sent between agents. One example of such an approach in the context of

standard tabula rasa reinforcement learning is introduced in Sukhbaatar & Fergus [29]. We

describe an algorithm which integrates a differentiable inter-agent communication channel

with apprenticeship learning in Section 4.1, and compare the performance of this approach

with those of several baseline communication methodologies in Section 5.2.

4 Methods

In this section, we describe an algorithm for apprenticeship learning in cooperative, multi-

agent heterogeneous environments with inter-agent communication when the communication

itself is not demonstrated. In Subsection 4.1, we give an overview of the learning algorithm
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and modeling assumptions. We build on this foundation in Subsections 4.2, in which we

discuss an alternative discriminator architecture designed to handle cooperation between

heterogeneous agents. The remaining three subsections motivate auxiliary optimization

objectives designed to further improve sample efficiency in difficult environments.

4.1 Algorithm

We consider a centralized training and decentralized execution (CTDE) paradigm [30] similar

to the approaches used in MA-GAIL [26] and MA-AIRL [27]. Additional information is used

during the training process to enable efficient learning of the agents’ policies. However, during

execution time, each agent only utilizes information provided in their own, local observations

as well as the communicated messages received from other agents.

In our approach, we model communication by having each agent with index i broadcast a

vector, ci ∈ Rd for some fixed communication dimensionality d. Agent i’s policy is conditioned

on their own observation as well as the communications broadcast by every other agent:

ai ∼ πi(oi, c−i) where c−i = {cj | j ∈ 1, . . . , n, j 6= i} denotes the communications of all

agents aside from agent i.

We note that the empirical evaluations discussed in the MA-GAIL and MA-AIRL papers

involve environments in which every aspect of the current environment state is always observed

by at least one agent. In this work, we experiment with environments that have a greater

degree of partial observability. For instance, environments where each agent can only see

within a local vision radius. This requires agents to not only share information with each

other, but also integrate information across time. Thus, unlike, MA-GAIL and MA-AIRL,

we modify all tested approaches, including existing baselines, by introducing recurrence into

each agent’s neural network policy. One impact of this change is that any kind of behavioral

cloning pretraining (discussed further in Section 4.4) now involves some method to condition

on and update stored hidden states, e.g. truncated back-propagation through time [31].

For simplicity, we use a similar baseline network architecture similar to the architectures
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that appear in MA-GAIL for all agents, environments, and tested approaches. For the policy,

each agent initially processes their local observation via a fully connected layer, followed by

a Gated Recurrent Unit [32]. In the smaller environments, each agent simply receives the

encoding of their own observation, concatenated with the communication vectors broadcast

by the other agents, and passes this vector through a final linear layer in order to parameterize

a standard softmax policy. In environments with a larger number of agents, we instead

insert a self-attention mechanism as the penultimate layer in order to process the agents’

communication embeddings. We use similar model sizes and hidden layer dimensionalities in

all tested approaches; detailed hyperparameter settings can be found in Appendix A.

Following the CTDE paradigm, each agent is trained using a centralized critic. In

particular, we condition the critic on the observations of all agents and the actions taken

by all other agents when estimating any particular agent’s state value function, which is

consistent with the approach used in MA-GAIL. Identical critic architectures are used for all

agents in all tested approaches.

During training, a discriminator learns to differentiate between observations and actions

generated by the learned policies and those provided by expert demonstrations. The output

of this discriminator provides a reward signal to the agents, who are then trained via

standard reinforcement learning. Here, we use Proximal Policy Optimization (PPO) [33].

The pseudocode for the full, proposed algorithm is presented in 1.

4.2 Discriminator Architecture

MA-GAIL [26] introduces three three discriminator architectures, which they denote as

centralized, decentralized, and zero-sum, intended for fully cooperative, mixed cooperative-

competitive, and zero-sum games, respectively. In the decentralized architecture, each agent

receives their own reward signal as a function of their current local observation and action. The

centralized discriminator instead takes in the joint observations and actions of all agents and

outputs a single shared reward. Although the centralized discriminator was intended for fully
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Figure 1: Discriminator Architecture Comparison for n = 2 agents

cooperative tasks, Jeon et al. [28] find the centralized discriminator to have poor scalability as

the number of agents increases and recommend using the decentralized discriminator instead.

To illustrate a potential explanation for this phenomena, suppose we ignore the impact of

function approximation and assume that we have a tabular discriminator which simply outputs

1 for observation-action pairs stored in the demonstration dataset and zero otherwise. For

agent i, the likelihood that a single observation-action pair, (oi, ai), appears in the decentralized

case, is necessarily at least the likelihood that the entire team’s joint observation-action

(o,a), appears in the centralized case, for oi, ai in o,a. Therefore, supposing that the set of

demonstrated expert behaviors only represents a small portion of the space of all possible

behaviors, such a tabular discriminator would provide a much sparser reward signal in the

centralized case, reducing sample efficiency.

However, in order to enable cooperation among heterogeneous, communicating agents, we

find that it may be necessary to utilize information from other agents in the discriminator in

order to provide an informative learning signal. For example, if a particular agent does not

have its own local observations and instead needs to learn to act solely based on information

from other agents, a decentralized discriminator which only has access to the agent’s local

observation and action may not be sufficient.

We examine an alternative discriminator architecture which can access global observations

while being restricted to only utilize local actions: Di : O1 ×O2 × · · · ×On ×Ai → R. Since

this architecture utilizes observations on a global scale with actions a local scale, we call it
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the mixed discriminator architecture. The mixed architecture still maintains some of the

strengths of the decentralized architecture: after all, a joint-observation, single-action pair

(o, ai) is still exponentially more likely than a joint-observation, joint-action pair (o,a) as

the number of agents increases.

We conduct an ablation study, presented in Section 5.3, to analyze the empirical perfor-

mance of the decentralized, centralized, and mixed discriminators in several homogeneous

and heterogeneous multi-agent environments.

4.3 Communication Reconstruction

We introduce a reverse model for each agent that predicts the agent’s most recently broadcasted

communication given the team’s joint action and the communications of all other agents.

Denoting the reverse model gi, the reconstructed communication is given by ĉi
t = gi(at, c

−i)

and the policy and reverse model are trained together in an end-to-end fashion to minimize the

error in the reconstruction, ||ci
t−ĉi

t||22. This approach bears similarity to the mutual information

maximization approach presented in [34], but we apply the objective to embeddings for inter-

agent communication rather than embeddings used to model demonstrator preferences.

Additionally, in practice we do not sample from a posterior distribution over the latent

variable, and the reverse model simply generates its prediction deterministically as a function

of the agents’ action logits.

Motivating the communication reconstruction objective is the notion that, given the

effects of the communication (the actions taken by the other agents), we want to be able to

predict what each agent’s original communication was. This discourages distinct messages

from encoding the same semantic meaning, as the reverse model can only generate a single

point prediction for the original communication. Additionally, conditioning on the actions

encourages messages which are semantically meaningful and have a concrete impact on the

actions taken by other agents. The performance impact of this objective is analyzed in

Section 5.4.
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4.4 Behavioral Cloning

The mixed discriminator, unlike the global discriminator, does not condition the reward at

timestep t for agent i on the actions taken by other agents on the same timestep, a−i
t . This can

potentially mitigate immediate credit assignment issues. However, the return, as a function

of all future rewards, depends on all future states and thus still depends on actions taken by

other agents. The size of the joint action space can increase exponentially in the number

of agents, while it is possible for only a few joint actions to lead to a positive return. Thus,

although the mixed discriminator can reduce the sparsity of the reward, the fundamental

issue of credit assignment as we scale to a large number of agents still remains.

To reduce the necessity of exploring this exponentially large action space during online

learning, we can leverage behavioral cloning in either an offline or an online fashion. One

simple approach, suggested in [15], is to simply pretrain with behavioral cloning offline

before fine-tuning with reinforcement learning during online learning. In some cases, existing

work has introduced a constraint on the Kullback-Leibler divergence between the pretrained

and online agent in order to help mitigate catastrophic forgetting [35]. However, the latter

approach was intended for the problem setting of fine-tuning a sub-optimal initialization

using online reinforcement learning rather than apprenticeship learning.

Given that the demonstration dataset is stored and accessed anyway during GAIL-style

training, we examine the alternative of simply adding an auxiliary behavioral cloning objective

to the loss function during online learning. This is similar to the single-agent imitation

learning approach presented in [36], but is simpler as we find the importance sampling term to

be unnecessary to induce effective learning in the tested environments. In summary, at each

step, we update the policy and critic via reinforcement learning on the discriminator’s reward

signal applied to a minibatch of data generated by the current learned policy. Meanwhile,

a minibatch sampled from the demonstration dataset is used to simultaneously update the

discriminator and the policy, the former as positive samples in a binary cross-entropy objective,

and the latter via maximum likelihood. An analysis of the impact of behavioral cloning used
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Algorithm 1 Training Pseudocode
1: Obtain expert trajectories ζ i

E for each agent i = 1, . . . , n
2: Initialize policies πi

θ and discriminators Di
φ for each agent i = 1, . . . , n.

3: while not converged do
4: Collect trajectories ζπ = {(ot,at, ct)}T

t=1 by executing policies πi
θ for i = 1, . . . , n

5: Predict rewards via discriminator, ri(ot, ai
t)← log(Di

φ(ζπ))
6: Update θ, φ using ζπ, ζE according to objective 4.5
7: end while

in offline pretraining compared to behavioral cloning used as an auxiliary online objective is

ablated in Section 5.5.

4.5 Full Objective

The full objective function can be expressed as

Lθ,φ(ζπ, ζE) = LPPO
θ (ζπ) + LBCE

φ (ζπ, ζE) + λ1LR
θ (ζπ) + λ2LBC

θ (ζE), (1)

where ζπ is a minibatch of trajectory segments generated by the current policy; ζE is a

minibatch of trajectory segments sampled from the demonstration dataset; LPPO is the

standard clipped PPO objective with MSE value loss as described in [33]; LBCE is the binary

cross-entropy loss

LBCE
φ (ζπ, ζE) = (1− log(D(ζπ))) + log(D(ζE)), (2)

with D(ζ) being the mean predicted discriminator classification across trajectories ζ; LR

being the reconstruction objective (Section 4.3)

LR
θ (ζπ) = 1

n

n∑
i=1
||g(a, c−i)− ci||2, (3)

with a, c−i for each i sampled from ζπ; and LBC being the online behavioral cloning objective

LBC
θ (ζE) = − 1

n

n∑
i=1

πi(a | oi, c−i), (4)
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with a, oi, c−i sampled from ζE. The weights λ1 and λ2 are tuned as hyperparameters, and

the selected values can be found in Appendix A. We provide the pseudocode of our algorithm,

in terms of the objective defined above, in Algorithm 1.

5 Evaluation

5.1 Evaluation Domains

We empirically evaluate our approach on three environments previously studied in literature

regarding learned multi-agent communication.

Predator-Prey, proposed in [37], is a grid environment in which predator agents attempt

to find and move to a randomly placed prey. Each agent’s observation consists of only the

grid cells within a square vision radius. The environment terminates once every predator

successfully moves onto the grid cell with the prey, or some maximum episode length is

reached, whichever happens first.

The Predator-Capture-Prey environment, studied in [38], is a heterogeneous version of

Predator-Prey in which a number of predator agents are replaced with blind ‘capture’ agents.

These capture agents do not receive observations about their surrounding cells, so they must

locate the prey based purely on the communications received from the predator agents.

FireCommander [39] is a difficult environment where a heterogeneous team of perception

agents capable of sensing fires and blind action agents capable of extinguishing them must

coordinate to put out a wildfire. Unlike Predator-Capture-Prey, the number of targets (fires,

rather than prey) changes throughout an episode, as the fires spread or get extinguished.

This environment terminates once all fires are extinguished, or again, if some maximum

episode length is reached.

In contrast to the empirical evaluations presented in MA-GAIL and MA-AIRL, these

three environments have the property that all agents can simultaneously take actions which

directly influence the state in some way (such as moving, capturing, or extinguishing fires)
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Figure 2: Learning curves comparing the proposed algorithm to several baseline approaches on the
easy (5× 5) versions of the environments. Training occurs fully online, without behavioral cloning
pretraining and without the auxiliary behavioral cloning objective. Shaded regions correspond to
bootstrapped 95% confidence intervals for the mean across 3 independent seeds.

and communicate with other agents on the team.

In order to generate demonstrations, the results presented in the original MA-GAIL [26]

and MA-AIRL [27] papers collect data from a team of agents trained with reinforcement

learning, leveraging a provided ground-truth reward signal. Unfortunately, due to the difficulty

of the tasks evaluated in this work, state of the art reinforcement learning approaches

typically do not learn near-optimal policies. For example, the best reported performance

on FireCommander in [38] averages 46.40 steps per episode, while a heuristic-based policy

we designed averages 14.44 steps per episode. Since MA-GAIL and MA-AIRL assume

demonstration optimality, we use heuristic-based policies to generate all demonstrations for

all presented experimental results.

5.2 Baselines

We first empirically validate the algorithm presented in Section 4.1 compared against several

baseline approaches. In particular, one plausible alternative to introducing a differentiable

communication channel is to integrate communication into the environment, similar to the

setup described in MA-GAIL and MA-AIRL. However, this introduces extra communication

observations and actions during online learning which are not available in the offline dataset.

This asymmetry prevents a naive application of GAIL, as the discriminator requires consistent

17



observation and action spaces for both the generated and demonstrated data. In the comm

LFD baseline, we remedy this issue by modifying the demonstrations to include additional

communication actions using a heuristic. Each agent broadcasts a one-hot encoded vector

based on their local observations. More detail on the heuristics for both the environment

and communication actions are available in Appendix B. The comm LFD baseline contrasts

with our proposed method in that instead of introducing new communications into the

demonstrations, our method restricts the information available to the discriminator during

online learning by abstracting the communication into a separate channel instead. In a third

baseline, we attempt to sidestep the issues with the discriminator altogether by learning to

communicate through the environment via the ground-truth reward signal. In other words,

we simply use standard reinforcement learning, and correspondingly denote this method

as RL. For the sake of completeness, we also compare against an MA-GAIL variant that

simply ignores communication entirely, called no-comm LFD. All approaches utilize the same

policy network architecture sizes where applicable, as well as identical hyperparameter sweep

budgets and critic architectures.

Figure 2 depicts learning curves for each approach on the easy (5×5) versions of the three

tasks. To isolate the impact of the communication architecture, we do not utilize behavioral

cloning in any form for this experiment (λ2 = 0). The proposed approach outperforms

the baseline approaches in all environments in terms of final performance (fewest steps per

episode) after 500 iterations of PPO, or approximately 2 million environment interactions.

On the medium (10×10) and hard (20×20) environments, we find the auxiliary behavioral

cloning objective to be necessary for effective learning. For fairness, we include this objective

for all tested methods in this experiment. The results are depicted in Figure 3. Due to

the behavioral cloning objective, we find that sample efficiency is improved significantly, so

we end training after 200 iterations of PPO, or approximately 800 thousand environment

interactions. Again, we find that the proposed approach outperforms the baseline approaches

in every case.
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Figure 3: Learning curves comparing the proposed algorithm to several baseline approaches on the
medium (10×10) and hard (20×20) versions of the environments. Training for all depicted methods
utilizes the auxiliary behavioral cloning objective. Shaded regions correspond to bootstrapped 95%
confidence intervals for the mean across 3 independent seeds.

5.3 Discriminator Architectures

We utilize the previously described differentiable communication channel architecture as a

drop-in replacement for the policy network in MA-GAIL, and we now examine the impact of

introducing our mixed discriminator architecture on the reward side of apprenticeship learning.

We present baselines corresponding to two relevant existing discriminator architectures, namely

the decentralized and centralized discriminators proposed in the original MA-GAIL paper.

For fairness, all results presented in this section utilize the same policy and critic architectures,

hyperparameter sweep budgets, and also leverage identical auxiliary reconstruction objectives.

In order to isolate the effects of the discriminator’s reward signal, we do not train with
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Figure 4: Learning curves comparing performance between different discriminator architectures on
the 5 simplest environments, without behavioral cloning. Shaded regions correspond to bootstrapped
95% confidence intervals for the mean across 3 independent seeds.

behavioral cloning in this experiment. We evaluate the three discriminators on the five

environments which demonstrate at least a reasonable degree of learning without behavioral

cloning (see Section 5.5). As shown in Figure 4, the choice of discriminator architecture

seems to have little to no impact on the easiest environments (5 × 5 Predator-Prey and

Predator-Capture-Prey). However, on the difficult, heterogeneous environments (10 × 10

Predator-Capture-Prey, 5× 5 FireCommander), the decentralized discriminator fails to learn

any useful behavior. Meanwhile, the mixed discriminator architecture has performance which

is at least competitive with or better than the performance of the next best architecture,

typically being the centralized discriminator. We note that the centralized discriminator only

demonstrated learning in one out of three seeds for 10× 10 Predator-Capture-Prey.

5.4 Ablation: Reconstruction Objective

We compare performance with our method both with (tuned λ1) and without (λ1 = 0)

the reconstruction loss, as defined in Equation 4.5. As depicted in Figure 5, although

the reconstruction objective does result in a small improvement in sample efficiency, it

does not explain the entirety of the performance improvement that the proposed algorithm
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Figure 5: Ablation results for the communication reconstruction objective, trained without behavioral
cloning. Shaded regions correspond to bootstrapped 95% confidence intervals for the mean across 3
independent seeds.

demonstrates in Section 5.2.

5.5 Ablation: Behavioral Cloning

Here, we analyze the performance impact of the different approaches to integrating behavioral

cloning into our method. We compare three approaches. As a baseline, we include one

approach without any behavioral cloning. In this case, the learning signal only comes from

the discriminator’s reward signal. This setup was is identical to the one used for the easy

(5× 5) results in Section 5.2. We also compare against the naive approach of pretraining with

behavioral cloning offline in order to initialize the policy network, before continuing training

online, again using only the discriminator’s reward signal. A third approach, identical to

the one used for the medium (10 × 10) and hard (20 × 20) results in Section 5.2, adds an

auxiliary behavioral cloning term to the loss during online training. In other words, the

minibatch of transitions sampled from the demonstration dataset is not only used to update

the discriminator, but also update the current policy via maximum likelihood.

As depicted in Figure 6, although the approach which simply initializes via behavioral

cloning does result in a performance improvement compared to no behavioral cloning at all,
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Figure 6: Ablation results for behavioral cloning, comparing a baseline without BC, a baseline
which uses BC at initialization, and an approach which adds a BC term to the objective during
online learning. Shaded regions correspond to bootstrapped 95% confidence intervals for the mean
across 3 independent seeds.

the performance improves by at most only a small margin during online training, and even

degrades over time in 10× 10 FireCommander. Meanwhile, the online approach consistently

learns a behavior which not only outperforms the initial performance of the pretrained

approach, but also has the best final performance out of all methods.

6 Discussion

Of the three evaluation domains we experiment with, the simplest, homogeneous domain,

Predator-Prey, primarily saw improvements in learning performance from introducing differen-

tiable communication 5.2 and from introducing behavioral cloning as an auxiliary objective 5.5.
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Indeed, these two approaches result in consistent improvements across all three domains.

Meanwhile, we see from Sections 5.3 and 5.4 that the alternative discriminator architectures

and the reconstruction objective generally see improvements only in the difficult heteroge-

neous domains, especially FireCommander. Thus, the former two contributions appear to be

broadly useful across a variety of collaborative multi-agent settings, while the latter seem to

be effective in specifically dealing with inter-agent heterogeneity.

One caveat to note is that in the Predator-Prey and Predator-Capture-Prey environments,

agents are prevented from moving once they successfully reach a prey. Although this is not an

issue in Predator-Prey, we note that this effectively grants capture agents a 1×1 vision radius,

as, given a recurrent policy parameterization, an agent can simply check whether its last action

resulted in a successful move to determine whether their last position contained the prey.

This can, in practice, slightly reduce inter-agent heterogeneity, especially in the easy version

of Predator-Capture-Prey, where the predator agents only have a 1× 1 vision radius. We

leave these dynamics unchanged to match the experimental settings appearing in prior work

[38], but we note that a potential alternative approach may be to utilize a modified version

of the environment in which capture agents are not prevented from moving, especially if the

goal is specifically measure the impact of heterogeneity on a Predator-Prey-like environment.

Though, for the purposes of this work, the FireCommander environment does not have this

issue, and thus provides a sufficient setting for analyzing learning under heterogeneity.

7 Conclusion

In this work, we propose an approach for sample-efficient apprenticeship learning in cooperative

multi-agent environments. By integrating MA-GAIL [26] with a differentiable, attention-based

communication architecture, we create an algorithm that is capable of learning to imitate a

demonstrated coordination strategy without a need for manual specification or demonstration

of the necessary communication protocol.
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Additionally, we introduce a novel mixed global/local discriminator architecture which is

robust to heterogeneity in the agents’ observation and action spaces, and we also propose

several auxiliary optimization objectives which improve the scalability of our approach for

difficult tasks with large numbers of agents. By combining these approaches, our algorithm

demonstrates effective learning on a variety of difficult tasks that require communication

between numerous heterogeneous agents.

8 Limitations and Future Work

Several potential avenues of future work exist. One is that although the proposed algorithm

is designed to be robust to agent heterogeneity, the empirical evaluations in this work do

not explicitly attempt to integrate our approach with multi-agent reinforcement learning

algorithms designed to specifically leverage heterogeneity (or, to be precise, approaches which

leverage the sparse homogeneity that exists within heterogeneous teams), such as the work

presented in [38]. We also do not attempt to address scenarios in which communication may

have limited bandwidth, noise, or sparse inter-agent connectivity.

Another avenue for future research is related to recent advancements in online, single-agent

imitation learning algorithms which are discriminator-free, such as the approach by Garg et

al. [19]. At the moment, it is unclear how our findings related to discriminator architecture

design and its impacts on learning with communication between heterogeneous agents might

be adapted to such approaches.

Since this work focuses on an apprenticeship learning setting without a provided ground-

truth reward signal, we do not attempt to handle scenarios with sub-optimal demonstrations.

Combining our work with approaches designed to handle suboptimality such as [40] is an

additional area to potentially pursue in the future.
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A Hyperparameters

Table 1: Hyperparameters

Name Value
hidden layer dimensionality 64 (easy), 256 (moderate/hard)
rollout steps 4096
T-BPTT [31] segment length 8
segments per minibatch 8 (easy), 32 (moderate/hard)
total minibatch size 64 (easy), 256 (moderate/hard)
PPO [33] clipping ε 0.2
PPO epochs 3
learning rate [10−4, 10−3]
discount factor 0.99
GAE [41] lambda 0.5
Reconstruction coefficient (λ1) 0.1 (easy), 0.01 (moderate/hard)
BC coefficient (λ2) 0 (easy), [10−1.5, 100] (moderate/hard)
discriminator learning rate 10−5 (10−3 for centralized discriminator)
max gradient norm 5.0

We tuned hyperparameters via grid search up to a resolution of 2 steps per decade.

B Expert Heuristics

Table 2: Expert Heuristic Performance (episode length)

Difficulty Predator-Prey Predator-Capture-Prey FireCommander
5× 5 8.573± 2.175 9.677± 2.628 14.439± 8.712
10× 10 12.221± 3.017 14.763± 3.858 16.160± 8.247
20× 20 24.915± 5.512 27.701± 6.617 24.213± 13.721

For the communication heuristic, we used a baseline approach in which each agent

generates a one-hot encoded representation as a function of their last k observations. To

embed the observations into a one-hot vector, we simply perform K-means clustering over the

observations in the demonstration dataset for each environment, and map each observation

to the index of the nearest cluster center. For k > 1, we instead perform this procedure over

the last k observation vectors, concatenated. We find k = 2 to have the best performance.
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